机器学习 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载

机器学习电子书下载地址
内容简介:
本书对所有主要的机器学习方法和新研究趋势进行了深入探索,涵盖概率和确定性方法以及贝叶斯推断方法。其中,经典方法包括平均/小二乘滤波、卡尔曼滤波、随机逼近和在线学习、贝叶斯分类、决策树、逻辑回归和提升方法等,新趋势包括稀疏、凸分析与优化、在线分布式算法、RKH空间学习、贝叶斯推断、图模型与隐马尔可夫模型、粒子滤波、深度学习、字典学习和潜变量建模等。全书构建了一套明晰的机器学习知识体系,各章内容相对独立,物理推理、数学建模和算法实现精准且细致,并辅以应用实例和习题。本书适合该领域的科研人员和工程师阅读,也适合学习模式识别、统计/自适应信号处理和深度学习等课程的学生参考。
书籍目录:
Contents
Preface.iv
Acknowledgments.vv
Notation.vfivi
CHAPTER 1 Introduction .1
1.1 What Machine Learning is About1
1.1.1 Classification.2
1.1.2 Regression3
1.2 Structure and a Road Map of the Book5
References8
CHAPTER 2 Probability and Stochastic Processes 9
2.1 Introduction.10
2.2 Probability and Random Variables.10
2.2.1Probability11
2.2.2Discrete Random Variables12
2.2.3Continuous Random Variables14
2.2.4Meanand Variance15
2.2.5Transformation of Random Variables.17
2.3 Examples of Distributions18
2.3.1Discrete Variables18
2.3.2Continuous Variables20
2.4 Stochastic Processes29
2.4.1First and Second Order Statistics.30
2.4.2Stationarity and Ergodicity30
2.4.3PowerSpectral Density33
2.4.4Autoregressive Models38
2.5 InformationTheory.41
2.5.1Discrete Random Variables42
2.5.2Continuous Random Variables45
2.6 Stochastic Convergence48
Problems49
References51
CHAPTER 3 Learning in Parametric Modeling: Basic Concepts and Directions 53
3.1 Introduction.53
3.2 Parameter Estimation: The Deterministic Point of View.54
3.3 Linear Regression.57
3.4 Classification60
3.5 Biased Versus Unbiased Estimation.64
3.5.1 Biased or Unbiased Estimation?65
3.6 The Cramér-Rao Lower Bound67
3.7 Suf?cient Statistic.70
3.8 Regularization.72
3.9 The Bias-Variance Dilemma.77
3.9.1 Mean-Square Error Estimation77
3.9.2 Bias-Variance Tradeoff78
3.10 MaximumLikelihoodMethod.82
3.10.1 Linear Regression: The Nonwhite Gaussian Noise Case84
3.11 Bayesian Inference84
3.11.1 The Maximum a Posteriori Probability Estimation Method.88
3.12 Curse of Dimensionality89
3.13 Validation.91
3.14 Expected and Empirical Loss Functions.93
3.15 Nonparametric Modeling and Estimation.95
Problems.97
References102
CHAPTER4 Mean-quare Error Linear Estimation105
4.1Introduction.105
4.2Mean-Square Error Linear Estimation: The Normal Equations106
4.2.1The Cost Function Surface107
4.3A Geometric Viewpoint: Orthogonality Condition109
4.4Extensionto Complex-Valued Variables111
4.4.1Widely Linear Complex-Valued Estimation113
4.4.2Optimizing with Respect to Complex-Valued Variables: Wirtinger Calculus116
4.5Linear Filtering.118
4.6MSE Linear Filtering: A Frequency Domain Point of View120
4.7Some Typical Applications.124
4.7.1Interference Cancellation124
4.7.2System Identification125
4.7.3Deconvolution: Channel Equalization126
4.8Algorithmic Aspects: The Levinson and the Lattice-Ladder Algorithms132
4.8.1The Lattice-Ladder Scheme.137
4.9Mean-Square Error Estimation of Linear Models.140
4.9.1The Gauss-Markov Theorem143
4.9.2Constrained Linear Estimation:The Beamforming Case145
4.10Time-Varying Statistics: Kalman Filtering148
Problems.154
References158
CHAPTER 5 Stochastic Gradient Descent: The LMS Algorithm and its Family .161
5.1 Introduction.162
5.2 The Steepest Descent Method163
5.3 Application to the Mean-Square Error Cost Function167
5.3.1 The Complex-Valued Case175
5.4 Stochastic Approximation177
5.5 The Least-Mean-Squares Adaptive Algorithm179
5.5.1 Convergence and Steady-State Performanceof the LMS in Stationary Environments.181
5.5.2 Cumulative Loss Bounds186
5.6 The Affine Projection Algorithm.188
5.6.1 The Normalized LMS.193
5.7 The Complex-Valued Case.194
5.8 Relatives of the LMS.196
5.9 Simulation Examples.199
5.10 Adaptive Decision Feedback Equalization202
5.11 The Linearly Constrained LMS204
5.12 Tracking Performance of the LMS in Nonstationary Environments.206
5.13 Distributed Learning:The Distributed LMS208
5.13.1Cooperation Strategies.209
5.13.2The Diffusion LMS211
5.13.3 Convergence and Steady-State Performance: Some Highlights218
5.13.4 Consensus-Based Distributed Schemes.220
5.14 A Case Study:Target Localization222
5.15 Some Concluding Remarks: Consensus Matrix.223
Problems.224
References227
CHAPTER 6 The Least-Squares Family 233
6.1 Introduction.234
6.2 Least-Squares Linear Regression: A Geometric Perspective.234
6.3 Statistical Properties of the LS Estimator236
6.4
作者介绍:
作者简介
Sergios Theodoridis 希腊雅典大学信息系教授。主要研究方向是自适应信号处理、通信与模式识别。他是欧洲并行结构及语言协会(PARLE-95)的主席和欧洲信号处理协会(EUSIPCO-98)的常务主席、《信号处理》杂志编委。
Konstantinos Koutroumbas 1995年在希腊雅典大学获得博士学位。自2001年起任职于希腊雅典国家天文台空间应用研究院,是国际知名的专家。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
Of course, the author, being human, could not avoid emphasizing the techniques with which he is most familiar. This is healthy, since writing a book is a means of sharing the author's expertise and point of view with readers. This is why I strongly believe that a new book does not come to replace previous ones, but to complement previously published points of view.
For a fixed number of training points, N, in the data sets D, trying to minimize the variance term results in an increase of the bias term and vice versa. This is because, in order to reduce the bias term, one has to increase the complexity (more free parameters) of the adopted estimator f (·; D). This, in turn, results in higher variance as we change the training sets. This is a manifestation of the over fitting issue that we have already discussed. The only way to reduce both terms simultaneously is to increase the number of the training data points, N, and at the same time increase the complexity of the model carefully, so as to achieve the aforementioned goal. If one increases the number of training points and at the same time increases the model complexity excessively, the overall MSE...
其它内容:
书籍介绍
本书对所有主要的机器学习方法和新研究趋势进行了深入探索,涵盖概率和确定性方法以及贝叶斯推断方法。其中,经典方法包括平均/小二乘滤波、卡尔曼滤波、随机逼近和在线学习、贝叶斯分类、决策树、逻辑回归和提升方法等,新趋势包括稀疏、凸分析与优化、在线分布式算法、RKH空间学习、贝叶斯推断、图模型与隐马尔可夫模型、粒子滤波、深度学习、字典学习和潜变量建模等。全书构建了一套明晰的机器学习知识体系,各章内容相对独立,物理推理、数学建模和算法实现精准且细致,并辅以应用实例和习题。本书适合该领域的科研人员和工程师阅读,也适合学习模式识别、统计/自适应信号处理和深度学习等课程的学生参考。
网站评分
书籍多样性:4分
书籍信息完全性:9分
网站更新速度:8分
使用便利性:9分
书籍清晰度:7分
书籍格式兼容性:3分
是否包含广告:6分
加载速度:8分
安全性:5分
稳定性:4分
搜索功能:7分
下载便捷性:3分
下载点评
- 图书多(78+)
- 好评(65+)
- 一星好评(187+)
- azw3(357+)
- 五星好评(84+)
- 值得购买(408+)
- 体验好(379+)
- 经典(417+)
- 收费(174+)
- 排版满分(383+)
下载评价
- 网友 寇***音:
好,真的挺使用的!
- 网友 沈***松:
挺好的,不错
- 网友 菱***兰:
特好。有好多书
- 网友 薛***玉:
就是我想要的!!!
- 网友 戈***玉:
特别棒
- 网友 扈***洁:
还不错啊,挺好
- 网友 宫***凡:
一般般,只能说收费的比免费的强不少。
- 网友 堵***格:
OK,还可以
- 网友 融***华:
下载速度还可以
- 网友 仰***兰:
喜欢!很棒!!超级推荐!
喜欢"机器学习"的人也看了
秘密特工000② mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
天津市高考历年试题经典荟萃 语文·数学·英语 预售时间:2023年11月1日-11月30日 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
藏经阁万年择吉通书 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
世界散文诗宝典 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
天利38套 化学--(2015)中考考点巧背速记(中考工具箱) mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
财富本源与世界统一货币 曹钟勇 著 中国铁道出版社,【正版保证】 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
战争与和平(套装全4册)(全新插画珍藏版!如果这个世界做自我介绍,就是《战争与和平》的样子!)(读客经典文库) mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
中药学专业知识(一)——国家执业药师职业资格考试临考冲刺模拟试卷 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
2020注册电气工程师执业资格考试 专业基础 辅导教程(供配电、发输变电专业) mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
9787518006342 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 7号人轻松粘土魔法书:可爱萌物篇 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 猫咪的第一本游戏书:玩出亲密与纪律 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 昨日的世界 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 星火英语初中英语语法全解中考语法大全2019张道真推荐英语语法书初中英语七八九年级初一初二初三语法辅导材料工具书 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 2023版高三总复习指导地理北京市西城区教育研修学院编第13版高考模拟高中地理同步练习册高三年级高考地理总复习资料模拟题册 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 理想树 2020版 初中必刷题 道德与法治八年级下册 RJ 人教版 配狂K重点 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 星球小卫士:节能行动 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 电子商务 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 创新驱动战略下企业成本费用粘性与创新绩效研究 刘嫦,刘立飒 经济管理出版社 【新华书店正版图书书籍】 mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
- 超高层建筑体系的抗震减振--理论方案数值与试验(精) mobi pdf azw3 夸克云 pdb 115盘 lrf 下载
书籍真实打分
故事情节:6分
人物塑造:3分
主题深度:3分
文字风格:3分
语言运用:8分
文笔流畅:8分
思想传递:8分
知识深度:5分
知识广度:9分
实用性:7分
章节划分:3分
结构布局:4分
新颖与独特:9分
情感共鸣:5分
引人入胜:4分
现实相关:4分
沉浸感:3分
事实准确性:3分
文化贡献:5分